[jira] Created: (MATH-342) SVD crashes when applied to a strongly rectangular matrix (typical case of least-squares problem)

classic Classic list List threaded Threaded
4 messages Options
Reply | Threaded
Open this post in threaded view
|

[jira] Created: (MATH-342) SVD crashes when applied to a strongly rectangular matrix (typical case of least-squares problem)

ASF GitHub Bot (Jira)
SVD crashes when applied to a strongly rectangular matrix (typical case of least-squares problem)
-------------------------------------------------------------------------------------------------

                 Key: MATH-342
                 URL: https://issues.apache.org/jira/browse/MATH-342
             Project: Commons Math
          Issue Type: Bug
    Affects Versions: Nightly Builds
            Reporter: Dimitri Pourbaix
            Assignee: Dimitri Pourbaix


When SVD is applied to a strongly rectangular matrix (number of rows way larger than number of columns, typical case of least-squares problem), finite precision arithmetics shows up:
 - in EigenDecompositionImpl.isSymmetric: a by-definition symmetric matrix returns false;
 - in EigenDecompositionImpl.findEigenVectors: too many iterations exception

--
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.

Reply | Threaded
Open this post in threaded view
|

[jira] Resolved: (MATH-342) SVD crashes when applied to a strongly rectangular matrix (typical case of least-squares problem)

ASF GitHub Bot (Jira)

     [ https://issues.apache.org/jira/browse/MATH-342?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]

Dimitri Pourbaix resolved MATH-342.
-----------------------------------

       Resolution: Fixed
    Fix Version/s: Nightly Builds

The two identified troublesome behaviors of EigenDecomposition are corrected.  Besides the regular unit tests, the two classes SingularValueDecompositionimpl and EigenDecompositionImpl have now been successfully tested over 300k+ systems coming from some astronomical application.  No crash reported!

> SVD crashes when applied to a strongly rectangular matrix (typical case of least-squares problem)
> -------------------------------------------------------------------------------------------------
>
>                 Key: MATH-342
>                 URL: https://issues.apache.org/jira/browse/MATH-342
>             Project: Commons Math
>          Issue Type: Bug
>    Affects Versions: Nightly Builds
>            Reporter: Dimitri Pourbaix
>            Assignee: Dimitri Pourbaix
>             Fix For: Nightly Builds
>
>
> When SVD is applied to a strongly rectangular matrix (number of rows way larger than number of columns, typical case of least-squares problem), finite precision arithmetics shows up:
>  - in EigenDecompositionImpl.isSymmetric: a by-definition symmetric matrix returns false;
>  - in EigenDecompositionImpl.findEigenVectors: too many iterations exception

--
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.

Reply | Threaded
Open this post in threaded view
|

[jira] Closed: (MATH-342) SVD crashes when applied to a strongly rectangular matrix (typical case of least-squares problem)

ASF GitHub Bot (Jira)
In reply to this post by ASF GitHub Bot (Jira)

     [ https://issues.apache.org/jira/browse/MATH-342?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]

Phil Steitz closed MATH-342.
----------------------------


> SVD crashes when applied to a strongly rectangular matrix (typical case of least-squares problem)
> -------------------------------------------------------------------------------------------------
>
>                 Key: MATH-342
>                 URL: https://issues.apache.org/jira/browse/MATH-342
>             Project: Commons Math
>          Issue Type: Bug
>    Affects Versions: 2.0
>            Reporter: Dimitri Pourbaix
>            Assignee: Dimitri Pourbaix
>             Fix For: 2.1
>
>
> When SVD is applied to a strongly rectangular matrix (number of rows way larger than number of columns, typical case of least-squares problem), finite precision arithmetics shows up:
>  - in EigenDecompositionImpl.isSymmetric: a by-definition symmetric matrix returns false;
>  - in EigenDecompositionImpl.findEigenVectors: too many iterations exception

--
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.

Reply | Threaded
Open this post in threaded view
|

[jira] Updated: (MATH-342) SVD crashes when applied to a strongly rectangular matrix (typical case of least-squares problem)

ASF GitHub Bot (Jira)
In reply to this post by ASF GitHub Bot (Jira)

     [ https://issues.apache.org/jira/browse/MATH-342?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]

Phil Steitz updated MATH-342:
-----------------------------

    Affects Version/s:     (was: Nightly Builds)
                       2.0
        Fix Version/s:     (was: Nightly Builds)
                       2.1

> SVD crashes when applied to a strongly rectangular matrix (typical case of least-squares problem)
> -------------------------------------------------------------------------------------------------
>
>                 Key: MATH-342
>                 URL: https://issues.apache.org/jira/browse/MATH-342
>             Project: Commons Math
>          Issue Type: Bug
>    Affects Versions: 2.0
>            Reporter: Dimitri Pourbaix
>            Assignee: Dimitri Pourbaix
>             Fix For: 2.1
>
>
> When SVD is applied to a strongly rectangular matrix (number of rows way larger than number of columns, typical case of least-squares problem), finite precision arithmetics shows up:
>  - in EigenDecompositionImpl.isSymmetric: a by-definition symmetric matrix returns false;
>  - in EigenDecompositionImpl.findEigenVectors: too many iterations exception

--
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.